Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Crystallographi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Crystallographica Section E: Crystallographic Communications
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Crystal structures of binuclear complexes of gadolinium(III) and dysprosium(III) with oxalate bridges and chelating N,N′-bis(2-oxidobenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine (bbpen2−)

Authors: Guilherme Augusto Barbosa; Francielli Sousa Santana; Giovana Gioppo Nunes; Jaísa Fernandes Soares;

Crystal structures of binuclear complexes of gadolinium(III) and dysprosium(III) with oxalate bridges and chelating N,N′-bis(2-oxidobenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine (bbpen2−)

Abstract

The reaction between mononuclear [Ln(bbpen)Cl] [Ln = Gd or Dy; H2bbpen = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine, C28H30N4O2] and potassium oxalate monohydrate in water/methanol produced the solvated centrosymmetric isostructural binuclear (μ-oxalato)bis{[N,N′-bis(2-oxidobenzyl-κO)-N,N′-bis(pyridin-2-ylmethyl-κN)ethylenediamine-κ2 N,N′]dilanthanide(III)}–methanol–water (1/4/4) complexes, [Ln 2(C28H28N4O2)2(C2O4)]·4CH3OH·4H2O, with lanthanide(III) = gadolinium(III) (Ln = Gd) and dysprosium(III) (Ln = Dy), in high yields (ca 70%) directly from the reaction mixtures. In both complexes, the lanthanide ion is eight-coordinate and adopts a distorted square-antiprismatic coordination environment. The triclinic (P\overline{1}) unit cell contains one dimeric unit together with four water and four methanol molecules; in the final structural model, two of each type of solvating molecule refine well. In each lanthanide(III) dimeric molecule, the medium-strength O...H—O hydrogen-bonding pattern involves four oxygen atoms, two of them from the phenolate groups that are `bridged' by one water and one methanol molecule. These interactions seem to contribute to the stabilization of the relatively compact shape of the dimer. Electron densities associated with an additional water and methanol molecule were removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. These two new compounds are of interest with respect to magnetic properties.

Keywords

crystal structure, lanthanide, Crystallography, QD901-999, N,N′-bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine, binuclear, oxalate bridge, H2bbpen, Research Communications

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities