Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1995 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1996
versions View all 2 versions

Mutations of zeste that mediate transvection are recessive enhancers of position-effect variegation in Drosophila melanogaster.

Authors: B H, Judd;

Mutations of zeste that mediate transvection are recessive enhancers of position-effect variegation in Drosophila melanogaster.

Abstract

Abstract Evidence is presented demonstrating that mutations of zeste, particularly the null state, are strong recessive enhancers of position-effect variegation (PEV) for the white, roughest and Notch loci. The zeste locus encodes a DNA-binding protein that acts as a transcription factor and mediates transvection phenomena at several loci. Its involvement with these seemingly diverse phenomena suggests that the normal zeste product functions in the decondensation of chromatin. A model is presented proposing that zeste is important for opening and stabilizing domains of chromatin, a step in gene determination and the establishment of cell memory. It postulates that chromatin domains that have been structurally modified by chromosomal rearrangement or by insertion of transposable elements are particularly sensitive to the absence or modification of the zeste protein. Such a view unifies the role of zeste in transcription, transvection and PEV.

Keywords

Male, Genes, Insect, Genes, Recessive, DNA-Binding Proteins, Drosophila melanogaster, Enhancer Elements, Genetic, Suppression, Genetic, Gene Expression Regulation, Mutation, Animals, Drosophila Proteins, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
hybrid