Cyclic GMP-dependent Stimulation of Serotonin Transport Does Not Involve Direct Transporter Phosphorylation by cGMP-dependent Protein Kinase
Cyclic GMP-dependent Stimulation of Serotonin Transport Does Not Involve Direct Transporter Phosphorylation by cGMP-dependent Protein Kinase
The serotonin transporter (SERT) is responsible for reuptake of serotonin (5-hydroxytryptamine) after its exocytotic release from neurons. It is the primary target for antidepressants and stimulants, including "ecstasy" (3,4-methylenedioxymethamphetamine). SERT is regulated by several processes, including a cyclic GMP signaling pathway involving nitric oxide synthase, guanylyl cyclase, and cGMP-dependent protein kinase (PKG). Here, we show that SERT was phosphorylated in a PKG Iα-dependent manner in vitro, but that SERT was not a direct substrate of PKG. We generated an analog-sensitive gatekeeper residue mutant of PKG Iα (M438G) that efficiently used the ATP analog N(6)-benzyl-ATP. This mutant, but not the wild type (WT) kinase, used the ATP analog to phosphorylate both a model peptide substrate as well as an established protein substrate of PKG (vasodilator-stimulated phosphoprotein). PKG Iα M438G effectively substituted for the WT kinase in stimulating SERT-mediated 5-hydroxytryptamine transport in cultured cells. Addition of either WT or mutant PKG Iα M438G to membranes containing SERT in vitro led to radiolabel incorporation from [γ-(33)P]ATP but not from similarly labeled N(6)-benzyl-ATP, indicating that SERT was phosphorylated by another kinase that could not utilize the ATP analog. These results are consistent with the proposed SERT phosphorylation site, Thr-276, being highly divergent from the consensus PKG phosphorylation site sequence, which we verified through peptide library screening. Another proposed SERT kinase, the p38 mitogen-activated protein kinase, could not substitute for PKG in this assay, and p38 inhibitors did not block PKG-dependent phosphorylation of SERT. The results suggest that PKG initiates a kinase cascade that leads to phosphorylation of SERT by an as yet unidentified protein kinase.
- Yale University United States
- University of Pennsylvania United States
Serotonin Plasma Membrane Transport Proteins, Serotonin, Mutation, Missense, Biological Transport, Active, p38 Mitogen-Activated Protein Kinases, HEK293 Cells, Amino Acid Substitution, Humans, Phosphorylation, Cyclic GMP, Cyclic GMP-Dependent Protein Kinase Type I
Serotonin Plasma Membrane Transport Proteins, Serotonin, Mutation, Missense, Biological Transport, Active, p38 Mitogen-Activated Protein Kinases, HEK293 Cells, Amino Acid Substitution, Humans, Phosphorylation, Cyclic GMP, Cyclic GMP-Dependent Protein Kinase Type I
16 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
