Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2000
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2000 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3

Authors: Hidetaka Kosako; Hirohide Takebayashi; Michiya Sugimori; Ryo Kominami; Yo-ichi Nabeshima; Shosei Yoshida; Masato Nakafuku;

Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3

Abstract

Basic helix-loop-helix (bHLH) transcription factors have been shown to be essential for specification of various cell types. Here, we describe a novel bHLH family consisting of three members, two of which (Olig1, Olig2) are expressed in a nervous tissue-specific manner, whereas the third, Olig3 is found mainly in non-neural tissues. Olig1 and Olig2, which recently have been implicated in oligodendrogenesis, are expressed in the region of the ventral ventricular zone of late embryonic spinal cord where oligodendrocyte progenitors appear. In the embryonic brain, the Olig2 expression domain is broader than that of Olig1 and does not overlap with an oligodendrocyte progenitor marker, CNP. Furthermore, Olig2 is expressed in most cells in the ventral half of the early embryonic spinal cord, which do not yet express an early neuronal marker TuJ1. These results indicate that Olig2 expression is not limited to the oligodendrocyte lineage but includes immature neuronal progenitors and multipotential neuron/glia progenitors as well as embryonic olfactory neurons.

Keywords

Neurons, Embryology, Helix-Loop-Helix Motifs, Molecular Sequence Data, Chromosome Mapping, Nerve Tissue Proteins, Oligodendrocyte Transcription Factor 2, Blotting, Northern, Immunohistochemistry, DNA-Binding Proteins, Mice, Inbred C57BL, Mice, Haplotypes, Basic Helix-Loop-Helix Transcription Factors, Animals, Humans, Cell Lineage, Amino Acid Sequence, Cloning, Molecular, Alleles, In Situ Hybridization, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    355
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
355
Top 1%
Top 1%
Top 1%
hybrid