Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1994
versions View all 2 versions

Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements

Authors: Sergio A. Lira; William D. Snider; Sherri Bryant; Richard J. Smeyne; Mariano Barbacid; Li Zhang; Inmaculada Silos-Santiago; +2 Authors

Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements

Abstract

The trkC gene is expressed throughout the mammalian nervous system and encodes a series of tyrosine protein kinase isoforms that serve as receptors for neurotrophin-3 (NT3), a member of the nerve growth factor (NGF) family of neurotrophic factors. One of these isoforms, gp145trkC/TrkC K1, mediates the trophic properties of NT3 in cultured cells. Here we show that homozygous mice defective for TrkC tyrosine protein kinase receptors lack Ia muscle afferent projections to spinal motor neurons and have fewer large myelinated axons in the dorsal root and posterior columns of the spinal cord. These mice display abnormal movements and postures, indicating that NT3/TrkC-dependent sensor; neurons may play a primary role in proprioception, the sense of position and movement of the limbs.

Keywords

Heterozygote, Movement Disorders, Base Sequence, Muscles, RNA Splicing, Homozygote, Molecular Sequence Data, Posture, Receptor Protein-Tyrosine Kinases, Cell Count, DNA, Proprioception, Clone Cells, Mice, Inbred C57BL, Mice, Ganglia, Spinal, Mutation, Animals, Amino Acid Sequence, Neurons, Afferent

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    615
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
615
Top 1%
Top 1%
Top 0.1%