Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Cancer Research
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Genetic and Expression Analysis of MET, MACC1, and HGF in Metastatic Colorectal Cancer: Response to Met Inhibition in Patient Xenografts and Pathologic Correlations

Authors: GALIMI, Francesco; TORTI, DAVIDE; SASSI, FRANCESCO; ISELLA, CLAUDIO; CORA', DAVIDE; GASTALDI, Stefania; Dario Ribero; +18 Authors

Genetic and Expression Analysis of MET, MACC1, and HGF in Metastatic Colorectal Cancer: Response to Met Inhibition in Patient Xenografts and Pathologic Correlations

Abstract

Abstract Purpose: We determined the gene copy numbers for MET, for its transcriptional activator MACC1 and for its ligand hepatocyte growth factor (HGF) in liver metastases from colorectal carcinoma (mCRC). We correlated copy numbers with mRNA levels and explored whether gain and/or overexpression of MET and MACC1 predict response to anti-Met therapies. Finally, we assessed whether their genomic or transcriptional deregulation correlates with pathologic and molecular parameters of aggressive disease. Experimental Design: One hundred three mCRCs were analyzed. Copy numbers and mRNA were determined by quantitative PCR (qPCR). Thirty nine samples were implanted and expanded in NOD (nonobese diabetic)/SCID (severe combined immunodeficient) mice to generate cohorts that were treated with the Met inhibitor JNJ-38877605. In silico analysis of MACC1 targets relied on genome-wide mapping of promoter regions and on expression data from two CRC datasets. Results: No focal, high-grade amplifications of MET, MACC1, or HGF were detected. Chromosome 7 polysomy and gain of the p-arm were observed in 21% and 8% of cases, respectively, and significantly correlated with higher expression of both Met and MACC1. Met inhibition in patient-derived xenografts did not modify tumor growth. Copy number gain and overexpression of MACC1 correlated with unfavorable pathologic features better than overexpression of Met. Bioinformatic analysis of putative MACC1 targets identified elements besides Met, whose overexpression cosegregated with aggressive forms of colorectal cancer. Conclusions: Experiments in patient-derived xenografts suggest that mCRCs do not rely on Met genomic gain and/or overexpression for growth. On the basis of pathologic correlations and bioinformatic analysis, MACC1 could contribute to CRC progression through mechanisms other than or additional to Met transcriptional upregulation. Clin Cancer Res; 17(10); 3146–56. ©2011 AACR.

Country
Italy
Keywords

Male, HEPATOCYTE GROWTH-FACTOR, 610, Antineoplastic Agents, PRIMARY COLON-CANCER, Mice, SCID, Biomarkers, Pharmacological, LIVER METASTASES, Mice, Mice, Inbred NOD, HEPATOCYTE GROWTH-FACTOR; PRIMARY COLON-CANCER; LIVER METASTASES; KINASE INHIBITORS; BREAST-CANCER; AMPLIFICATION; IDENTIFICATION; PROTOONCOGENE; , CHEMOTHERAPY; SENSITIVITY, Biomarkers, Tumor, BREAST-CANCER, Animals, Humans, Neoplasm Metastasis, Protein Kinase Inhibitors, Aged, Aged, 80 and over, IDENTIFICATION, Hepatocyte Growth Factor, Gene Expression Profiling, KINASE INHIBITORS, Carcinoma, AMPLIFICATION, 600, PROTOONCOGENE, CHEMOTHERAPY, Middle Aged, Gene Expression Regulation, Neoplastic, Female, SENSITIVITY, Colorectal Neoplasms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 10%
Top 10%
Top 1%
Green
bronze
Related to Research communities
Cancer Research