Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 5 versions

Autophagy, Not Apoptosis, Is Essential for Midgut Cell Death in Drosophila

Authors: Denton, D.; Shravage, B.; Simin, R.; Mills, K.; Berry, D.; Baehrecke, E.; Kumar, S.;

Autophagy, Not Apoptosis, Is Essential for Midgut Cell Death in Drosophila

Abstract

Most developmentally programmed cell death in metazoans is mediated by caspases. During Drosophila metamorphosis, obsolete tissues, including the midgut and salivary glands, are removed by programmed cell death [1]. The initiator caspase Dronc and its activator Ark are required for the death of salivary glands, but not for midgut removal [2, 3]. In addition to caspases, complete removal of salivary glands requires autophagy [4]. However, the contribution of autophagy to midgut cell death has not been explored. Examination of combined mutants of the main initiator and effector caspases revealed that the canonical apoptotic pathway is not required for midgut cell death. Further analyses revealed that the caspase Decay is responsible for most of the caspase activity in dying midguts, yet inhibition of this activity has no effect on midgut removal. By contrast, midgut degradation was severely delayed by inhibition of autophagy, and this occurred without a decrease in caspase activity. Surprisingly, the combined inhibition of caspases and autophagy did not result in an additional delay in midgut removal. Together, our results indicate that autophagy, not caspases, is essential for midgut programmed cell death, providing the first in vivo evidence of caspase-independent programmed cell death that requires autophagy despite the presence of high caspase activity.

Keywords

570, cellcycle, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Metamorphosis, Biological, DEVBIO, Apoptosis, CELLCYCLE, Cellcycle, Caspases, Autophagy, Animals, Drosophila Proteins, Drosophila, Devbio, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    337
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
337
Top 1%
Top 1%
Top 1%
hybrid