Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Society of Nephrology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Mouse Model of X-Linked Alport Syndrome

Authors: Yoav Segal; Clifford E. Kashtan; Stefan M. Kren; Michelle N. Rheault; Hector Mesa; John T. Crosson; Yoshikazu Sado; +2 Authors
Abstract

X-linked Alport syndrome (XLAS) is a progressive disorder of basement membranes caused by mutations in the COL4A5 gene, encoding the alpha5 chain of type IV collagen. A mouse model of this disorder was generated by targeting a human nonsense mutation, G5X, to the mouse Col4a5 gene. As predicted for a nonsense mutation, hemizygous mutant male mice are null and heterozygous carrier female mice are mosaic for alpha5(IV) chain expression. Mutant male mice and carrier female mice are viable through reproductive age and fertile. Mutant male mice died spontaneously at 6 to 34 wk of age, and carrier female mice died at 8 to 45 wk of age, manifesting proteinuria, azotemia, and progressive and manifold histologic abnormalities of the kidney glomerulus and tubulointerstitium. Ultrastructural abnormalities of the glomerular basement membrane, including lamellation and splitting, were characteristic of human XLAS. The mouse model described here recapitulates essential clinical and pathologic findings of human XLAS. With alpha5(IV) expression reflecting X-inactivation patterns, it will be especially useful in studying determinants of disease variability in the carrier state.

Related Organizations
Keywords

Collagen Type IV, Male, Base Sequence, Genotype, Models, Genetic, Genetic Linkage, Molecular Sequence Data, Nephritis, Hereditary, Kidney, Mice, Mutant Strains, Mice, Inbred C57BL, Disease Models, Animal, Mice, Microscopy, Fluorescence, Codon, Nonsense, Mutation, Animals, Humans, Female, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 10%
Top 10%
Top 10%
bronze