Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1996 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Overexpression of an Activated rasG Gene during Growth Blocks the Initiation of Dictyostelium Development

Authors: M, Khosla; G B, Spiegelman; G, Weeks;

Overexpression of an Activated rasG Gene during Growth Blocks the Initiation of Dictyostelium Development

Abstract

Transformants that expressed either the wild-type rasG gene, an activated rasG-G12T gene, or a dominant negative rasG-S17N gene, all under the control of the folate-repressible discoidin (dis1gamma) promoter, were isolated. All three transformants expressed high levels of Ras protein which were reduced by growth in the presence of folate. All three transformants grew slowly, and the reduction in growth rate correlated with the amount of RasG protein produced, suggesting that RasG is important in regulating cell growth. The pVEII-rasG transformant containing the wild-type rasG gene developed normally despite the presence of high levels of RasG throughout development. This result indicates that the down regulation of rasG that normally occurs during aggregation of wild-type strains is not essential for the differentiation process. Dictyostelium transformants expressing the dominant negative rasG-S17N gene also differentiated normally. Dictyostelium transformants that overexpressed the activated rasG-G12T gene did not aggregate. The defect occurred very early in development, since the expression of car1 and pde, genes that are normally induced soon after the initiation of development, was repressed. However, when the transformant cells were pulsed with cyclic AMP, expression of both genes returned to wild-type levels. The transformants exhibited chemotaxis to cyclic AMP, and development was synergized by mixing with wild-type cells. Furthermore, cells that were pulsed with cyclic AMP for 4 h before being induced to differentiate by plating on filters produced small, but otherwise normal, fruiting bodies. These results suggest that the rasG-G12T transformants are defective in cyclic AMP production and that RasG - GTP blocks development by interfering with the initial generation of cyclic AMP pulses.

Related Organizations
Keywords

Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Developmental, Cell Differentiation, Fungal Proteins, Structure-Activity Relationship, Genes, ras, Gene Expression Regulation, Fungal, Cyclic AMP, Mutagenesis, Site-Directed, ras Proteins, Animals, Dictyostelium, RNA, Messenger, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
bronze