Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2003
Data sources: PubMed Central
The Journal of Cell Biology
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity

Authors: Jean Gladon; Makoto Furutani-Seiki; Trudi A. Westfall; Andrea Olberding; Jen Twedt; Diane C. Slusarski; Ryan Brimeyer;

Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity

Abstract

We provide genetic evidence defining a role for noncanonical Wnt function in vertebrate axis formation. In zebrafish, misexpression of Wnt-4, -5, and -11 stimulates calcium (Ca2+) release, defining the Wnt/Ca2+ class. We describe genetic interaction between two Wnt/Ca2+ members, Wnt-5 (pipetail) and Wnt-11 (silberblick), and a reduction of Ca2+ release in Wnt-5/pipetail. Embryos genetically depleted of both maternal and zygotic Wnt-5 product exhibit cell movement defects as well as hyperdorsalization and axis-duplication phenotypes. The dorsalized phenotypes result from increased β-catenin accumulation and activation of downstream genes. The Wnt-5 loss-of-function defect is consistent with Ca2+ modulation having an antagonistic interaction with Wnt/β-catenin signaling.

Related Organizations
Keywords

Homeodomain Proteins, Zebrafish Proteins, Article, Wnt-5a Protein, Wnt Proteins, Cytoskeletal Proteins, Phenotype, Proto-Oncogene Proteins, Calcium-Calmodulin-Dependent Protein Kinases, Morphogenesis, Trans-Activators, Animals, Calcium, Female, Mitogens, Calcium-Calmodulin-Dependent Protein Kinase Type 2, In Situ Hybridization, Zebrafish, Body Patterning, Glycoproteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    237
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
237
Top 10%
Top 1%
Top 1%
Green
bronze