Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Biotechnology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Biotechnology Journal
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2004
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Evry
Article . 2004
Data sources: HAL Evry
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2004
Data sources: HAL INRAE
versions View all 5 versions

DEAD‐box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes

Authors: Mingam, A.; Toffano-Nioche, Claire; Brunaud, Véronique; Boudet, Nathalie; Kreis, M.; Lecharny, A.;

DEAD‐box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes

Abstract

SummaryThe model genome of Arabidopsis thaliana contains a DEAD‐box RNA helicase family (RH) of 58 members, i.e. almost twice as many as in the animal or yeast genomes. Transcript profiling using real‐time quantitative polymerase chain reaction (PCR) has been obtained for 20 AtRHs from nine different organs. Two AtRHs exhibited plant‐specific profiles associated with photosynthetic and sink organs. The other 18 AtRHs had the same transcript profile, and the levels of transcription of these ‘housekeeping’AtRHs were under strict quantitative control over a large range of values. Transcript levels may be very different between the most recently duplicated genes. The master regulatory element in the definition of the transcript level is the simultaneous presence of a TATA‐box and an intron in the 5′ untranslated region (UTR). There is a positive and highly significant correlation between the size of the 5′ UTR intron and the transcription level, as long as a characteristic TATA‐box is present. Our work on the housekeeping AtRHs suggests a scenario for the evolution of duplicated genes, leading to both highly and poorly transcribed genes in the same terminal branch of the phylogenetic tree. The general evolutionary drive of the AtRH family, after duplication of a highly transcribed ancestral AtRH, was towards an alteration of the transcriptional activity of the divergent duplicates through successive events of suppression of the TATA‐box and/or the 5′ UTR intron.

Country
France
Keywords

[SDV.BV]Life Sciences [q-bio]/Vegetal Biology, [SDV.BV] Life Sciences [q-bio]/Vegetal Biology, FAMILLE DE GENE, HELICASES

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Average
gold