Aerobic Training Prevents Heatstrokes in Calsequestrin‐1 Knockout Mice by Reducing Oxidative Stress
Aerobic Training Prevents Heatstrokes in Calsequestrin‐1 Knockout Mice by Reducing Oxidative Stress
Calsequestrin‐1 knockout (CASQ1‐null) mice suffer lethal episodes when exposed to strenuous exercise and environmental heat, crises known as exertional/environmental heatstroke (EHS). We previously demonstrated that administration of exogenous antioxidants (N‐acetylcysteine and trolox) reduces CASQ1‐null mortality during exposure to heat. As aerobic training is known to boost endogenous antioxidant protection, we subjected CASQ1‐null mice to treadmill running for 2 months at 60% of their maximal speed for 1 h, 5 times/week. When exposed to heat stress protocol (41°C/1 h), the mortality rate of CASQ1‐null mice was significantly reduced compared to untrained animals (86% versus 16%). Protection from heatstrokes was accompanied by a reduced increase in core temperature during the stress protocol and by an increased threshold of response to caffeine of isolated extensor digitorum longus muscles during in vitro contracture test. At cellular and molecular levels, aerobic training (i) improved mitochondrial function while reducing their damage and (ii) lowered calpain activity and lipid peroxidation in membranes isolated from sarcoplasmic reticulum and mitochondria. Based on this evidence, we hypothesize that the protective effect of aerobic training is essentially mediated by a reduction in oxidative stress during exposure of CASQ1‐null mice to adverse environmental conditions.
- University of Siena Italy
- University of Chieti-Pescara Italy
- Londrina State University Brazil
- Department of Neuroscience Italy
Male, Mice, Knockout, Heat Stroke, Calcium-Binding Proteins, Gene Knockout Techniques, Mice, Oxidative Stress, Physical Conditioning, Animal, Animals, Calsequestrin, Research Article
Male, Mice, Knockout, Heat Stroke, Calcium-Binding Proteins, Gene Knockout Techniques, Mice, Oxidative Stress, Physical Conditioning, Animal, Animals, Calsequestrin, Research Article
21 Research products, page 1 of 3
- 2010IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
