Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2014 . Peer-reviewed
Data sources: DIGITAL.CSIC
Metallomics
Article . 2013 . Peer-reviewed
Data sources: Crossref
Metallomics
Article . 2014
versions View all 4 versions

Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster

Authors: Lucía, Gutiérrez; Kristina, Zubow; Jon, Nield; Alexis, Gambis; Bertrand, Mollereau; Francisco J, Lázaro; Fanis, Missirlis;

Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster

Abstract

Metals have vital functions as prosthetic groups in enzymes, but in labile form they can propagate oxidative stress. The primary function of ferritin is to store bioavailable iron in the form of ferrihydrite. In animals, ferritin is also used to traffic and recycle iron, and to modulate intestinal iron absorption. However, the effect of ferritin accumulation on cellular iron bioavailability remains poorly understood. Moreover, putative in vivo interactions of ferritin with other metal ions have been proposed, but their physiological relevance remains unclear. Here, heterozygous mutant and overexpression ferritin strains of Drosophila melanogaster were subjected to dietary iron manipulations to study the dynamics of iron partition between ferritin and other proteins. Quantitative magnetic analysis of whole fly samples indicated that iron loading of the ferritin core varied in the different genotypes. Total paramagnetic iron content, a likely correlate of bioavailable iron, was reduced in flies overexpressing ferritin when compared with control white flies. Further, three-dimensional maps of the ferritin protein shell and iron core were obtained from single particle transmission electron microscopy imaging and confirmed the similarity between Drosophila and Trichoplusia ferritin structures. Purified Drosophila ferritin also contained small amounts of zinc and manganese. Flies that overexpressed ferritin accumulated in their bodies half the amount of manganese compared to their respective controls. Our results indicate that ferritin may be involved in the homeostasis of other divalent metals, besides iron, and that overexpression of ferritin, sometimes employed to rescue neurodegenerative models of disease, serves to limit divalent metal bio-availability in cells.

Keywords

Heterozygote, Manganese, Genotype, Cations, Divalent, Iron, Temperature, Magnetic Resonance Imaging, Oxidative Stress, Zinc, Drosophila melanogaster, Microscopy, Electron, Transmission, Ferritins, Mutation, Animals, Homeostasis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 45
    download downloads 24
  • 45
    views
    24
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
41
Top 10%
Top 10%
Top 10%
45
24
Green