Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool

Authors: Ondrej Machon; Stefan Krauss; Nina Therese Solberg;

Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool

Abstract

AbstractCanonical Wnt signaling is crucial for the correct development of both cortical and hippocampal structures in the dorsal telencephalon. In this study, we examined the role of the canonical Wnt signaling in the dorsal telencephalon of mouse embryos at defined time periods by inhibition of the pathway with ectopic expression of Dkk1. Transgenic mice with the D6‐driven Dkk1 gene exhibited reduced canonical Wnt signaling in the cortex and hippocampus. As a result, all hippocampal fields were reduced in size. Neurogenesis in the dentate gyrus was severely reduced both in the premigratory and migratory progenitor pool. The lower number of progenitors in the dentate gyrus was not rescued after migration to the subgranular zone and thus the dentate gyrus lacked the entire internal blade and a part of the external blade from postnatal to adult stages. Developmental Dynamics 237:1799–1811, 2008. © 2008 Wiley‐Liss, Inc.

Keywords

Cerebral Cortex, Gene Expression Regulation, Developmental, Mice, Transgenic, Hippocampus, Immunohistochemistry, Wnt Proteins, Mice, Dentate Gyrus, In Situ Nick-End Labeling, Animals, Intercellular Signaling Peptides and Proteins, Promoter Regions, Genetic, In Situ Hybridization, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze