Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hypertension Researc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hypertension Research
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Responses of Blood Pressure and Catecholamine Metabolism to High Salt Loading in Endothelin-1 Knockout Mice.

Authors: H, Morita; H, Kurihara; Y, Kurihara; T, Kuwaki; T, Shindo; Y, Oh-hashi; M, Kumada; +1 Authors

Responses of Blood Pressure and Catecholamine Metabolism to High Salt Loading in Endothelin-1 Knockout Mice.

Abstract

The molecular mechanism responsible for salt sensitivity is poorly understood. Mice heterozygous for the null mutation of the endothelin-1 (ET-1) gene, Edn1, may be a potential tool for studying this mechanism, because they have elevated blood pressure and disturbances in central sympathetic nerve regulation. In the present study, we used this mouse model to examine the degree to which ET-1 contributes to the responses of blood pressure and catecholamine metabolism to high salt loading. Male Edn1+/- heterozygous mice and Edn1+/+ wild-type littermates were given either a high salt (8%) or a normal salt (0.7%) diet for 4 wk. During the normal diet, renal ET-1 levels in Edn1+/- mice were approximately 50% lower than ET-1 levels in wild-type mice, whereas the high salt diet decreased renal ET-1 levels by about 50% in both Edn1+/- and wild-type mice. The high salt diet significantly increased urinary sodium excretion and fractional excretion of sodium (FENa) but did not affect circulating plasma volume, serum electrolytes, creatinine clearance, or systemic blood pressure. In addition, urinary norepinephrine and normetanephrine excretion were significantly increased, indicating that salt loading can increase sympathetic nerve activity in normal mice. These responses to salt loading did not differ between Edn1+/- mice and their wild-type littermates. We conclude that physiological changes in ET-1 production do not affect the responses of blood pressure and catecholamine metabolism to salt loading, although the renal ET-1 content is decreased by salt loading.

Keywords

Male, Mice, Knockout, Sympathetic Nervous System, Endothelin-1, Sodium, Blood Pressure, Sodium, Dietary, Kidney Function Tests, Mice, Catecholamines, Animals, Follow-Up Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
bronze