Powered by OpenAIRE graph

Lipoxygenase-dependent superoxide release in skeletal muscle

Authors: Li, Zuo; Fievos L, Christofi; Valerie P, Wright; Shengying, Bao; Thomas L, Clanton;

Lipoxygenase-dependent superoxide release in skeletal muscle

Abstract

Superoxide anion radical (O2•−) is released from skeletal muscle at rest and is particularly elevated during conditions of heat stress (42°C). Previous studies have shown that in isolated rat diaphragm O2•−release is not dependent on mitochondrial electron transport, reduced NADP oxidase activity, or the integrity of membrane anion channels. This study hypothesized that O2•−release, as measured by cytochrome c reduction, is linked to metabolism of arachidonic acid. Phospholipase A2inhibition with manoalide significantly decreased O2•−release. In downstream pathways, neither the blockage of cyclooxygenase with indomethacin nor the inhibition of cytochrome P-450-dependent monooxygenase with SKF-525A decreased O2•−release. However, lipoxygenase (LOX) inhibition with general LOX blockers 5,8,11,14-eicosatetraynoic acid and cinnamyl-3,4-dihydroxy-α-cyanocinnamate greatly attenuated the signal. Furthermore, the specific 5-LOX inhibitor diethylcarbamazine also significantly decreased O2•−release. Immunohistochemistry localized 5- and 12-LOX to the cytosol and sarcolemma of muscle cells. Confocal studies, using the O2•−-sensitive fluorescent indicator hydroethidine, demonstrated that LOX inhibition had no significant influence on intracellular O2•−formation. When compared with the cytochrome c results, this indicates that intra- and extracellular O2•−must arise from different sources. These data show for the first time that arachidonic acid metabolism through LOX activity, is a major source of extracellular O2•−release in skeletal muscle.

Keywords

Male, Arachidonate 5-Lipoxygenase, Arachidonic Acid, Proadifen, Indomethacin, Arachidonate 12-Lipoxygenase, 5,8,11,14-Eicosatetraynoic Acid, Rats, Rats, Sprague-Dawley, Caffeic Acids, Superoxides, Animals, Cyclooxygenase Inhibitors, Lipoxygenase Inhibitors, Enzyme Inhibitors, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    100
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
100
Top 10%
Top 10%
Top 10%