Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Target of Drosophila Photoreceptor Synaptic Transmission Is a Histamine-gated Chloride Channel Encoded byort (hclA)

Authors: Chaoxian, Gengs; Hung-Tat, Leung; David R, Skingsley; Mladen I, Iovchev; Zhan, Yin; Eugene P, Semenov; Martin G, Burg; +2 Authors

The Target of Drosophila Photoreceptor Synaptic Transmission Is a Histamine-gated Chloride Channel Encoded byort (hclA)

Abstract

By screening Drosophila mutants that are potentially defective in synaptic transmission between photoreceptors and their target laminar neurons, L1/L2, (lack of electroretinogram on/off transients), we identified ort as a candidate gene encoding a histamine receptor subunit on L1/L2. We provide evidence that the ort gene corresponds to CG7411 (referred to as hclA), identified in the Drosophila genome data base, by P-element-mediated germ line rescue of the ort phenotype using cloned hclA cDNA and by showing that several ort mutants exhibit alterations in hclA regulatory or coding sequences and/or allele-dependent reductions in hclA transcript levels. Other workers have shown that hclA, when expressed in Xenopus oocytes, forms histamine-sensitive chloride channels. However, the connection between these chloride channels and photoreceptor synaptic transmission was not established. We show unequivocally that hclA-encoded channels are the channels required in photoreceptor synaptic transmission by 1) establishing the identity between hclA and ort and 2) showing that ort mutants are defective in photoreceptor synaptic transmission. Moreover, the present work shows that this function of the HCLA (ORT) protein is its native function in vivo.

Keywords

DNA, Complementary, Molecular Sequence Data, Genes, Insect, Blotting, Northern, Synaptic Transmission, Protein Subunits, Chloride Channels, Mutation, Animals, Receptors, Histamine, Drosophila, Photoreceptor Cells, Invertebrate, Amino Acid Sequence, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 10%
Top 10%
Top 10%
gold