Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

αB-Crystallin Is Elevated in Highly Infiltrative Apoptosis-Resistant Glioblastoma Cells

Authors: Dorota, Goplen; Sébastien, Bougnaud; Uros, Rajcevic; Stig O, Bøe; Kai O, Skaftnesmo; Juergen, Voges; Per Ø, Enger; +5 Authors

αB-Crystallin Is Elevated in Highly Infiltrative Apoptosis-Resistant Glioblastoma Cells

Abstract

We have previously established two distinct glioma phenotypes by serial xenotransplantation of human glioblastoma (GBM) biopsies in nude rats. These tumors undergo a gradual transition from a highly invasive nonangiogenic to a less-invasive angiogenic phenotype. In a protein screen to identify molecular markers associated with the infiltrative phenotype, we identified α-basic-crystallin (αBc), a small heat-shock protein with cytoprotective properties. Its increased expression in the infiltrative phenotype was validated by immunohistochemistry and Western blots, confirming its identity to be tumor-derived and not from the host. Stereotactic human GBM biopsies taken from MRI-defined areas verified stronger αBc expression in the infiltrative edge compared to the tumor core. Cell migration assays and immunofluorescence staining showed αBc to be expressed by migrating cells in vitro. To determine αBc function, we altered its expression levels. αBc siRNA depletion caused a loss of migrating tumor cells from biopsy spheroids and delayed monolayer wound closure. In contrast, glioma cell migration in a Boyden chamber assay was unaffected by either αBc knockdown or overexpression, indicating that αBc is not functionally linked to the cell migration machinery. However, after siRNA αBc depletion, a significant sensitization of cells to various apoptotic inducers was observed (actinomycin, tumor necrosis factor α, and TNF-related apoptosis-inducing ligand [TRAIL]). In conclusion, αBc is overexpressed by highly migratory glioma cells where it plays a functional role in apoptosis resistance.

Country
Slovenia
Keywords

tumors, Reverse Transcriptase Polymerase Chain Reaction, info:eu-repo/classification/udc/616-006, Blotting, Western, Brain, Fluorescent Antibody Technique, Apoptosis, Rats, Gene Expression Regulation, Neoplastic, Immunoenzyme Techniques, Rats, Nude, Cell Movement, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Spheroids, Cellular, Cell Adhesion, Animals, Humans, Electrophoresis, Gel, Two-Dimensional, RNA, Messenger, RNA, Small Interfering, Glioblastoma, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Green
hybrid