Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao genesisarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
genesis
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
genesis
Article . 2005
versions View all 2 versions

Cell fate decisions in the Drosophila dorsal vessel depend on the multiadapter protein inscuteable

Authors: Dmitry, Popichenko; Achim, Paululat;

Cell fate decisions in the Drosophila dorsal vessel depend on the multiadapter protein inscuteable

Abstract

AbstractThe Drosophila dorsal vessel consists of two cell types, contractile cardiomyoblasts that form a linear tube‐like structure, and the loosely associated pericardial cells. All heart cells originate during embryogenesis from the early dorsal mesoderm under the influence of external and internal signals. Recently, it was shown that a subset of heart cells arise throughout asymmetric cell division, dependent on the function of Notch, Sanpodo, and Numb. Here, we show that Inscuteable, a multiadapter protein required for asymmetric cell division, participates in the formation of specific heart cells to distinguish between a myogenic (cardiomyoblast) and a nonmyogenic (pericardial cell) fate. genesis 40:218–222, 2004. © 2004 Wiley‐Liss, Inc.

Related Organizations
Keywords

Myocardium, Neuropeptides, Gene Expression Regulation, Developmental, Heart, Coronary Vessels, Immunohistochemistry, Cytoskeletal Proteins, Animals, Drosophila Proteins, Drosophila, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average