Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Cardiac expression of the drosophila Transglutaminase (CG7356) gene is directly controlled by myocyte enhancer factor‐2

Authors: Jennifer, Iklé; Jennifer A, Elwell; Anton L, Bryantsev; Richard M, Cripps;

Cardiac expression of the drosophila Transglutaminase (CG7356) gene is directly controlled by myocyte enhancer factor‐2

Abstract

AbstractThe myocyte enhancer factor‐2 (MEF2) family of transcription factors plays key roles in the activation of muscle structural genes. In Drosophila, MEF2 accumulates at high levels in the embryonic muscles, where it activates target genes throughout the mesoderm. Here, we identify the Transglutaminase gene (Tg; CG7356) as a direct transcriptional target of MEF2 in the cardiac musculature. Tg is expressed in cells forming the inflow tracts of the dorsal vessel, and we identify the enhancer responsible for this expression. The enhancer contains three binding sites for MEF2, and can be activated by MEF2 in tissue culture and in vivo. Moreover, loss of MEF2 function, or removal of the MEF2 binding sites from the enhancer, results in loss of Tg expression. These studies identify a new MEF2 target in the cardiac musculature. These studies provide a possible mechanism for the activation of transglutaminase genes. Furthermore, given the relevance of transglutaminase genes to human disease, these studies provide a possible mechanism for their activation. Developmental Dynamics 237:2090–2099, 2008. © 2008 Wiley‐Liss, Inc.

Related Organizations
Keywords

Transglutaminases, Molecular Sequence Data, Gene Expression Regulation, Developmental, Heart, Gene Expression Regulation, Enzymologic, Tissue Culture Techniques, Drosophila melanogaster, Enhancer Elements, Genetic, Myogenic Regulatory Factors, Animals, Drosophila Proteins, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
bronze