Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Fu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer

Authors: S P, Hussain; C C, Harris;

p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer

Abstract

The activation of protooncogenes and inactivation of tumor suppressor genes in affected cells are considered as the core events that provide a selective growth advantage and clonal expansion during the multistep process of carcinogenesis. Somatic mutations, induced by exogenous or endogenous mechanisms, were found to alter the normal functions of the p53 tumor suppressor gene. p53 is the most prominent example of tumor suppressor genes because it is mutated in about half of all human cancer. In contrast to other tumor suppressor genes (like APC and RB), about 80% of p53 mutations are missense mutations that lead to amino acid substitutions in proteins and can alter the protein conformation and increase the stability of p53. These changes can also alter the sequence-specific DNA binding and transcription factor activity of p53. These abnormalities can abrogate p53 dependent pathways involved in important cellular functions like cell-cycle control, DNA repair, differentiation, genomic plasticity and programmed cell death. A number of different carcinogens have been found to cause different characteristic mutations in the p53 gene. For example, exposure to ultraviolet light is correlated with transition mutations at dipyrimidine sites; aflatoxin B(1) exposure is correlated with a G:C to T:A transversion that leads to a serine substitution at residue 249 of p53 in hepatocellular carcinoma; and exposure to cigarette smoke is correlated with G:C to T:A transversions in lung carcinoma. Therefore, measuring the characteristic p53 mutation load or frequency of mutated alleles in nontumorous tissue (before the clonal expansion of mutated cells), can generate hypotheses, e.g., providing a molecular linkage between exposure to a particular carcinogen and cancer, and identifying individuals at increased cancer risk.

Related Organizations
Keywords

Aflatoxin B1, Genes, p53, Nitric Oxide, Models, Biological, Carcinogens, Environmental, Neoplasms, Mutation, Benzo(a)pyrene, Carcinogens, Sunlight, Humans, Codon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 10%
Top 1%
Top 1%