Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in C...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Cell Biology
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Signalling pathways initiated by receptor protein tyrosine kinases in Drosophila

Authors: N, Perrimon;

Signalling pathways initiated by receptor protein tyrosine kinases in Drosophila

Abstract

The isolation and characterization of Drosophila mutations in receptor protein tyrosine kinases (RPTKs) have allowed a detailed analysis of the cellular processes regulated by these proteins. Recent investigations have identified a number of putative ligands involved in the activation of the receptors, and have demonstrated that these RPTKs trigger an evolutionarily conserved biochemical pathway. In addition to molecules previously identified from vertebrate studies, i.e. Grb2, Sos, Ras-Gap, p21ras, Raf, MEK and MAPK, genetic studies have suggested that two novel proteins, the protein tyrosine phosphatase (PTPase) Csw and the transmembrane protein Rho, are involved in RPTK signalling.

Related Organizations
Keywords

Models, Structural, Embryo, Nonmammalian, Mutation, Animals, Receptor Protein-Tyrosine Kinases, Drosophila, Photoreceptor Cells, Invertebrate, Biological Evolution, Protein Structure, Secondary, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 10%
Top 1%