Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gliaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Glia
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Glia
Article . 2004
versions View all 2 versions

Increased expression of two phospholipase D isoforms during experimentally induced hippocampal mossy fiber outgrowth

Authors: Yan, Zhang; Ping, Huang; Guangwei, Du; Yasunori, Kanaho; Michael A, Frohman; Stella E, Tsirka;

Increased expression of two phospholipase D isoforms during experimentally induced hippocampal mossy fiber outgrowth

Abstract

AbstractMammalian phospholipase D (PLD), a multifunctional signaling enzyme, has been reported to facilitate neurite outgrowth in cultured neurons. However, two mammalian isoforms have been found, PLD1 and PLD2, and it has not been determined which isoform is involved, or whether this in vitro phenomenon is relevant to neurite extension in vivo. Using confocal microscopy, we demonstrate that the PLDs are expressed by different cell types in the mouse brain: PLD1 by neurons, and PLD2 by astrocytes. Moreover, using a model of experimentally induced hippocampal mossy fiber sprouting, both isoforms were observed to increase dramatically in expression level along tracts of mossy fiber spouting, supporting the proposal that PLD plays a role in this process. Given that the two isoforms undertake unique molecular functions in cultured cells, our findings suggest that in vivo PLD1 and PLD2 may modulate neuronal plasticity via different pathways and cell types. © 2004 Wiley‐Liss, Inc.

Keywords

Male, Kainic Acid, Hippocampus, Gene Expression Regulation, Enzymologic, Isoenzymes, Mice, Inbred C57BL, Mice, Mossy Fibers, Hippocampal, Phospholipase D, Animals, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%