Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2001 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

HIRA, the Human Homologue of Yeast Hir1p and Hir2p, Is a Novel Cyclin-cdk2 Substrate Whose Expression Blocks S-Phase Progression

Authors: C, Hall; D M, Nelson; X, Ye; K, Baker; J A, DeCaprio; S, Seeholzer; M, Lipinski; +1 Authors

HIRA, the Human Homologue of Yeast Hir1p and Hir2p, Is a Novel Cyclin-cdk2 Substrate Whose Expression Blocks S-Phase Progression

Abstract

Substrates of cyclin-cdk2 kinases contain two distinct primary sequence motifs: a cyclin-binding RXL motif and one or more phosphoacceptor sites (consensus S/TPXK/R or S/TP). To identify novel cyclin-cdk2 substrates, we searched the database for proteins containing both of these motifs. One such protein is human HIRA, the homologue of two cell cycle-regulated repressors of histone gene expression in Saccharomyces cerevisiae, Hir1p and Hir2p. Here we demonstrate that human HIRA is an in vivo substrate of a cyclin-cdk2 kinase. First, HIRA bound to and was phosphorylated by cyclin A- and E-cdk2 in vitro in an RXL-dependent manner. Second, HIRA was phosphorylated in vivo on two consensus cyclin-cdk2 phosphoacceptor sites and at least one of these, threonine 555, was phosphorylated by cyclin A-cdk2 in vitro. Third, phosphorylation of HIRA in vivo was blocked by cyclin-cdk2 inhibitor p21(cip1). Fourth, HIRA became phosphorylated on threonine 555 in S phase when cyclin-cdk2 kinases are active. Fifth, HIRA was localized preferentially to the nucleus, where active cyclin A- and E-cdk2 are located. Finally, ectopic expression of HIRA in cells caused arrest in S phase and this is consistent with the notion that it is a cyclin-cdk2 substrate that has a role in control of the cell cycle.

Keywords

Cell Nucleus, Cyclin-Dependent Kinase Inhibitor p21, Blotting, Western, Cell Cycle, Cyclin-Dependent Kinase 2, Cell Cycle Proteins, Cell Separation, Cyclin A, Flow Cytometry, Cyclin-Dependent Kinases, Mass Spectrometry, Cell Line, Microscopy, Fluorescence, Cyclins, Cyclin E, CDC2-CDC28 Kinases, Humans, Histone Chaperones, Amino Acid Sequence, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 1%
bronze