Functional study of TCP23 in Arabidopsis thaliana during plant development
pmid: 23562796
Functional study of TCP23 in Arabidopsis thaliana during plant development
The TCP class of genes is found only in plants and is represented by the first three identified genes: teosinte branched 1, cycloidea and pcf. Members belonging to this class are important regulators of plant growth, development and control multiple traits in diverse plant species, including flower and petal asymmetry, plant architecture, leaf morphogenesis and senescence, embryo growth and circadian rhythm. Here we described a member of the TCP-P subfamily called AtTCP23. Using qRT-PCR we present evidence that AtTCP23 is ubiquitously express in all organs examined. To ascertain AtTCP23 localization, we fused GFP at the C-terminal position and analyzed stable expression by confocal microscopy. Transgenic lines harboring the full-length protein (OxTCP23:GFP) seems to accumulate GFP in the nucleus. In order to analyze AtTCP23 function, we obtained a T-DNA insertional line and developed AtTCP23 over-expression (OxTCP23) lines. Phenotypic analysis indicates that tcp23-1 knockout line has an early-flowering phenotype while overexpression lines (OxTCP23 and OxTCP23:eGFP) presents opposite phenotype. Besides that those lines have leaf morphology alteration, pale leaf borders and smaller roots. Thus we propose in this study that AtTCP23 may be involved in flowering time control and plant development.
DNA, Bacterial, Arabidopsis Proteins, Gene Expression Regulation, Plant, Arabidopsis
DNA, Bacterial, Arabidopsis Proteins, Gene Expression Regulation, Plant, Arabidopsis
2 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
