Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmaceutical Biolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pharmaceutical Biology
Article . 2021 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pharmaceutical Biology
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pharmaceutical Biology
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Establishment of an anti-inflammation-based bioassay for the quality control of the 13-component TCM formula (Lianhua Qingwen)

Authors: Ming Niu; Haizhu Zhang; Jianli Ma; Yanru Zhang; Yanru Zhang; Zhuo Shi; Shuai-Shuai Chen; +7 Authors

Establishment of an anti-inflammation-based bioassay for the quality control of the 13-component TCM formula (Lianhua Qingwen)

Abstract

Owing to the complexity of chemical ingredients in traditional Chinese medicine (TCM), it is difficult to maintain quality and efficacy by relying only on chemical markers.Lianhua Qingwen capsule (LHQW) was selected as an example to discuss the feasibility of a bioassay for quality control.Network pharmacology was used to screen potential targets in LHQW with respect to its anti-inflammatory effects. An in vitro cell model was used to validate the prediction. An anti-inflammatory bioassay was established for the quality evaluation of LHQW in 40 batches of marketed products and three batches of destructed samples.The tumor necrosis factor/interleukin-6 (TNF/IL-6) pathway via macrophage was selected as the potential target of LHQW. The IC50 value of LHQW on RAW 264.7 was 799.8 μg/mL. LHQW had significant inhibitory effects on the expression of IL-6 in a dose-dependent manner (p < 0.05). The anti-inflammatory biopotency of LHQW was calculated based on the inhibitory bioactivity on IL-6. The biopotency of 40 marketed samples ranged from 404 U/μg to 2171 U/μg, with a coefficient of variation (CV) of 37.91%. By contrast, the contents of forsythin indicated lower CV (28.05%) than the value of biopotency. Moreover, the biopotencies of destructed samples declined approximate 50%, while the contents of forsythin did not change. This newly established bioassay revealed a better ability to discriminate the quality variations of LHQW as compared to the routine chemical determination.A well-established bioassay may have promising ability to reveal the variance in quality of TCM.

Related Organizations
Keywords

quality variation, Quality Control, Dose-Response Relationship, Drug, interleukin-6, Drug Compounding, Anti-Inflammatory Agents, macrophage, RM1-950, Mice, RAW 264.7 Cells, biopotency, network pharmacology, Animals, Biological Assay, Therapeutics. Pharmacology, Inflammation Mediators, Research Article, Drugs, Chinese Herbal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold