Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2001 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

CAC3 (MSI1) Suppression ofRAS2G19V Is Independent of Chromatin Assembly Factor I and Mediated by NPR1

Authors: S D, Johnston; S, Enomoto; L, Schneper; M C, McClellan; F, Twu; N D, Montgomery; S A, Haney; +2 Authors

CAC3 (MSI1) Suppression ofRAS2G19V Is Independent of Chromatin Assembly Factor I and Mediated by NPR1

Abstract

Cac3p/Msi1p, the Saccharomyces cerevisiae homolog of retinoblastoma-associated protein 48 (RbAp48), is a component of chromatin assembly factor I (CAF-I), a complex that assembles histones H3 and H4 onto replicated DNA. CAC3 overexpression also suppresses the RAS/cyclic AMP (cAMP) signal transduction pathway by an unknown mechanism. We investigated this mechanism and found that CAC3 suppression of RAS/cAMP signal transduction was independent of either CAC1 or CAC2, subunits required for CAF-I function. CAC3 suppression was also independent of other chromatin-modifying activities, indicating that Cac3p has at least two distinct, separable functions, one in chromatin assembly and one in regulating RAS function. Unlike Cac1p, which localizes primarily to the nucleus, Cac3p localizes to both the nucleus and the cytoplasm. In addition, Cac3p associates with Npr1p, a cytoplasmic kinase that stablizes several nutrient transporters by antagonizing a ubiquitin-mediated protein degradation pathway. Deletion of NPR1, like overexpression of Cac3p, suppressed the RAS/cAMP pathway. Furthermore, NPR1 overexpression interfered with the ability of CAC3 to suppress the RAS/cAMP pathway, indicating that extra Cac3p suppresses the RAS/cAMP pathway by sequestering Npr1p. Deletion of NPR1 did not affect the quantity, phosphorylation state, or localization of Ras2p. Consistent with the idea that Npr1p exerts its effect on the RAS/cAMP pathway by antagonizing a ubiquitin-mediated process, excess ubiquitin suppressed both the heat shock sensitivity and the sporulation defects caused by constitutive activation of the RAS/cAMP pathway. Thus, CAC3/MSI1 regulates the RAS/cAMP pathway via a chromatin-independent mechanism that involves the sequestration of Npr1p and may be due to the increased ubiquitination of an Npr1p substrate.

Keywords

Cell Nucleus, Cytoplasm, Hot Temperature, Genotype, Chromosomal Proteins, Non-Histone, Green Fluorescent Proteins, Galactose, DNA, Precipitin Tests, DNA-Binding Proteins, Fungal Proteins, Chromatin Assembly Factor-1, Luminescent Proteins, Glucose, Phenotype, Cyclic AMP, Protein Kinases, Alleles, Plasmids, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
bronze