Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Membr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Membrane Biology
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Regulation of Basolateral Cl− Channels in Airway Epithelial Cells: The Role of Nitric Oxide

Authors: Florentina Duta; Lakshmi Puttagunta; Marek Duszyk; Valentin Duta; A. Dean Befus;

Regulation of Basolateral Cl− Channels in Airway Epithelial Cells: The Role of Nitric Oxide

Abstract

The presence of basolateral Cl(-) channels in airway epithelium has been reported in several studies, but little is known about their role in the regulation of anion secretion. The purpose of this study was to characterize regulation of these channels by nitric oxide (NO) in Calu-3 cells. Transepithelial measurements revealed that NO donors activated a basolateral Cl(-) conductance sensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and anthracene-9-carboxylic acid. Apical membrane permeabilization studies confirmed the basolateral localization of NO-activated Cl(-) channels. Experiments using 8-bromo cyclic guanosine monophosphate (8Br-cGMP) and selective inhibitors of soluble guanylyl cyclase and inducible NO synthase (1H-[1, 2, 4] oxadiazolol-[4, 3-a] quinoxalin-1-one [ODQ] and 1400W [N-(3-Aminomethyl)benzyl)acetamidine], respectively) demonstrated that NO activated Cl(-) channels via a cGMP-dependent pathway. Anion replacement and (36)Cl(-) flux studies showed that NO affected both Cl(-) and HCO (3) (-) secretion. Two different types of Cl(-) channels are known to be present in the basolateral membrane of epithelial cells: Zn(2+)-sensitive ClC-2 and DIDS-sensitive bestrophin channels. S-Nitrosoglutathione (GSNO) activated Cl(-) conductance in the presence of Zn(2+) ions, indicating that ClC-2 channel function was not affected by GSNO. In contrast, DIDS completely inhibited GSNO-activated Cl(-) conductance. Bestrophin immunoprecipitation studies showed that under control conditions bestrophin channels were not phosphorylated but became phosphorylated after GSNO treatment. The presence of bestrophin in airway epithelia was confirmed using immunohistochemistry. We conclude that basolateral Cl(-) channels play a major role in the NO-dependent regulation of anion secretion in Calu-3 cells.

Related Organizations
Keywords

Anions, Anthracenes, Benzylamines, Cell Membrane Permeability, Cell Membrane, Amidines, Cell Polarity, Endothelial Cells, Epithelial Cells, 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid, Cell Line, Chloride Channels, Guanylate Cyclase, Macrophages, Alveolar, Humans, Bestrophins, Eye Proteins, Cyclic GMP, Ion Channel Gating, Lung

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Top 10%