Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Toxicological Scienc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Toxicological Sciences
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Glutamate Cysteine Ligase Modifier Subunit Deficiency and Gender as Determinants of Acetaminophen-Induced Hepatotoxicity in Mice

Authors: Lisa A, McConnachie; Isaac, Mohar; Francesca N, Hudson; Carol B, Ware; Warren C, Ladiges; Carolina, Fernandez; Sam, Chatterton-Kirchmeier; +3 Authors

Glutamate Cysteine Ligase Modifier Subunit Deficiency and Gender as Determinants of Acetaminophen-Induced Hepatotoxicity in Mice

Abstract

The analgesic and antipyretic drug acetaminophen (APAP) is bioactivated to the reactive intermediate N-acetyl-p-benzoquinoneimine, which is scavenged by glutathione (GSH). APAP overdose can deplete GSH leading to the accumulation of APAP-protein adducts and centrilobular necrosis in the liver. N-acetylcysteine (NAC), a cysteine prodrug and GSH precursor, is often given as a treatment for APAP overdose. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate cysteine ligase (GCL) a heterodimer composed of catalytic and modifier (GCLM) subunits. Previous studies have indicated that GCL activity is likely to be an important determinant of APAP toxicity. In this study, we investigated APAP toxicity, and NAC or GSH ethyl ester (GSHee)-mediated rescue in mice with normal or compromised GCLM expression. Gclm wild-type, heterozygous, and null mice were administered APAP (500 mg/kg) alone, or immediately following NAC (800 mg/kg) or GSHee (168 mg/kg), and assessed for hepatotoxicity 6 h later. APAP caused GSH depletion in all mice. Gclm null and heterozygous mice exhibited more extensive hepatic damage compared to wild-type mice as assessed by serum alanine aminotransferase activity and histopathology. Additionally, male Gclm wild-type mice demonstrated greater APAP-induced hepatotoxicity than female wild-type mice. Cotreatment with either NAC or GSHee mitigated the effects of APAP in Gclm wild-type and heterozygous mice, but not in Gclm null mice. Collectively, these data reassert the importance of GSH in protection against APAP-induced hepatotoxicity, and indicate critical roles for GCL activity and gender in APAP-induced liver damage in mice.

Related Organizations
Keywords

Male, Sex Characteristics, Glutamate-Cysteine Ligase, Alanine Transaminase, Analgesics, Non-Narcotic, Glutathione, Mice, Inbred C57BL, Mice, Protein Subunits, Liver, Animals, Female, Acetaminophen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    159
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
159
Top 1%
Top 10%
Top 10%
bronze