Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions

Nonsense-Mediated Decay as the Molecular Cause for Autosomal Recessive Bestrophinopathy in Two Unrelated Families

Authors: Pomares E; Burés-Jelstrup A; Ruiz-Nogales S; Corcóstegui B; Gonzalez R; Navarro R;

Nonsense-Mediated Decay as the Molecular Cause for Autosomal Recessive Bestrophinopathy in Two Unrelated Families

Abstract

To characterize the molecular basis of two novel BEST1 mutations causing autosomal recessive bestrophinopathy (ARB). Strong evidence argues in favor of the dominant negative effects of most autosomal dominantly inherited mutations, whereas there is only weak support for the molecular basis of the ARB phenotype.Patients underwent ophthalmic examination, color and autofluorescence fundus imaging, optical coherence tomography (OCT), electrooculogram, and full-field electroretinogram (ERG). BEST1 was directly screened for mutations in two ARB unrelated patients. The pathogenicity of the new BEST1 variants was assessed in silico and in vivo.Two unrelated patients with diagnoses of ARB showed retinal pigment epithelial disturbances and abnormal ERGs. Each patient was homozygous for a novel BEST1 mutation, c.521_522del and c.1100+1G>A. A carrier sibling (WT/c.521_522del) was unaffected. Both mutations generate a frameshift and a premature stop codon that, if translated, would seriously compromise bestrophin-1 function. However, the in vivo quantitative RT-PCR assays showed that most of the mutated transcripts were eliminated before translation because the mRNA-BEST1 levels were dramatically diminished the controls.In truncating BEST1 mutations, the null phenotype associated with ARB is attributed to a substantial decrease of BEST1 expression promoted by the nonsense-mediated decay (NMD) surveillance mechanism. Moreover, the severity of the phenotype increases with the preserved amount of altered transcript, suggesting that the clinical outcome reflects the combined null and dominant negative effects of the two mutations over the patient's genetic background.

Keywords

Male, Heterozygote, Adolescent, Fundus Oculi, Homozygote, Mutation, Missense, Genes, Recessive, DNA, Retinal Pigment Epithelium, Middle Aged, Pedigree, Electrooculography, Chloride Channels, Retinal Dystrophies, Electroretinography, Humans, Female, Bestrophins, Fluorescein Angiography, Eye Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Green
gold