Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2004
versions View all 6 versions

Pin1 Links the Activities of c-Abl and p300 in Regulating p73 Function

Authors: MANTOVANI, FIAMMA; PIAZZA S; GOSTISSA M; STRANO S; ZACCHI P; MANTOVANI R; BLANDINO G; +1 Authors

Pin1 Links the Activities of c-Abl and p300 in Regulating p73 Function

Abstract

Activation of p73 upon genotoxic treatment triggers apoptosis of tumor cells lacking functional p53 and involves the activities of c-Abl and p300. Here, we demonstrate that conformational changes of p73 catalyzed by the prolyl isomerase Pin1 are crucial in this pathway. Lack of Pin1 reduces p73 stability, hampering its accumulation upon genotoxic stress. Indeed, we show that upon treatment with chemotherapeutic drugs c-Abl enhances the phosphorylation-dependent interaction between Pin1 and p73, and this in turn promotes p73 acetylation by p300. Consistently, the ability of c-Abl and p300 to increase p73 stability and transcriptional activity requires Pin1. As a consequence, Pin1 appears to be essential for activation of the apoptotic response by endogenous p73.

Keywords

Protein Conformation, Antineoplastic Agents, Apoptosis, Cell Cycle Proteins, Mice, Pin1, Acetyltransferases, Cell Line, Tumor, Genes, Regulator, prolyl isomerase pin1 ; dna-damage ; cell-cycle ; p53-dependent apoptosis ; p53-related protein ; induce apoptosis ; family-members ; breast-cancer ; target genes ; p53, p73 tumor suppressor; Pin1; apoptosis, Animals, Humans, Genes, Tumor Suppressor, Phosphorylation, Proto-Oncogene Proteins c-abl, Molecular Biology, Histone Acetyltransferases, apoptosis, Nuclear Proteins, Cell Biology, Peptidylprolyl Isomerase, DNA-Binding Proteins, NIMA-Interacting Peptidylprolyl Isomerase, p73 tumor suppressor, DNA Damage, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    163
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
163
Top 10%
Top 10%
Top 1%
hybrid
Related to Research communities
Cancer Research