Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1998 . Peer-reviewed
Data sources: Crossref
Development
Article . 1999
versions View all 2 versions

decapentaplegic is required for arrest in G1 phase during Drosophila eye development

Authors: Horsfield, Julie A.; Penton, Andrea; Secombe, Julie; Hoffman, F. Michael; Richardson, Helena Elizabeth;

decapentaplegic is required for arrest in G1 phase during Drosophila eye development

Abstract

ABSTRACT During eye development in Drosophila, cell cycle progression is coordinated with differentiation. Prior to differentiation, cells arrest in G1 phase anterior to and within the morphogenetic furrow. We show that Decapentaplegic (Dpp), a TGF-β family member, is required to establish this G1 arrest, since Dpp-unresponsive cells located in the anterior half of the morphogenetic furrow show ectopic S phases and ectopic expression of the cell cycle regulators Cyclins A, E and B. Conversely, ubiquitous over-expression of Dpp in the eye imaginal disc transiently inhibits S phase without affecting Cyclin E or Cyclin A abundance. This Dpp-mediated inhibition of S phase occurs independently of the Cyclin A inhibitor Roughex and of the expression of Dacapo, a Cyclin E-Cdk2 inhibitor. Furthermore, Dpp-signaling genes interact genetically with a hypomorphic cyclin E allele. Taken together our results suggest that Dpp acts to induce G1 arrest in the anterior part of the morphogenetic furrow by a novel inhibitory mechanism. In addition, our results provide evidence for a Dpp-independent mechanism that acts in the posterior part of the morphogenetic furrow to maintain G1 arrest.

Related Organizations
Keywords

571, Eye development, Cell Cycle, G1 Phase, Nuclear Proteins, Cell Differentiation, Eye, Immunohistochemistry, S Phase, Drosophila melanogaster, Gene Expression Regulation, Microscopy, Fluorescence, Cyclins, Microscopy, Electron, Scanning, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Eye Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
bronze