Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2003
versions View all 3 versions

Characterization of Pellino2, a substrate of IRAK1 and IRAK4

Authors: Strelow, Astrid; Kollewe, Christian; Wesche, Holger;

Characterization of Pellino2, a substrate of IRAK1 and IRAK4

Abstract

Interleukin‐1 (IL‐1) receptor‐associated kinases (IRAKs) are central components of Toll/IL‐1 receptor (TIR) signaling pathways. In an attempt to discover novel signal transducers in TIR signaling, we identified human Pellino2 as an interaction partner of IRAK4. Pellino2 interacts with kinase‐active as well as kinase‐inactive IRAK1 and IRAK4. Furthermore, Pellino2 is one of the first substrates identified for IRAK1 and IRAK4. Functional studies using overexpression or RNAi knock‐down of Pellino2 suggest a role of Pellino2 as a scaffolding protein similar to Pellino1. However, unlike Pellino1, Pellino2 does not seem to activate a specific transcription factor, but links TIR signaling to basic cellular processes.

Keywords

Ubiquitin-Protein Ligases, Genetic Vectors, IRAK, Nuclear Proteins, Saccharomyces cerevisiae, Pellino, Recombinant Proteins, Cell Line, Substrate Specificity, Phosphotransferases (Alcohol Group Acceptor), Interleukin-1 Receptor-Associated Kinases, Genes, Reporter, IL-1 signalling, Humans, Cloning, Molecular, Protein Kinases, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze