Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2011
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2011
Data sources: DOAJ
versions View all 4 versions

Urinary Podocyte-Associated mRNA profile in Various Stages of Diabetic Nephropathy

Authors: Min Zheng; Lin-Li Lv; Jie Ni; Hai-Feng Ni; Qing Li; Kun-Ling Ma; Bi-Cheng Liu;

Urinary Podocyte-Associated mRNA profile in Various Stages of Diabetic Nephropathy

Abstract

Podocyte injury and subsequent excretion in urine play a crucial role in the pathogenesis and progression of diabetic nephropathy (DN). Quantification of messenger RNA (mRNA) expression in urinary sediment by real-time PCR is emerging as a noninvasive method of screening DN-associated biomarkers. We hypothesized that the urinary mRNA profile of podocyte-associated molecules may provide important clinical insight into the different stages of diabetic nephropathy.DN patients (N = 51) and healthy controls (N = 13) were enrolled in this study. DN patients were divided into a normoalbuminuria group (UAE300 mg/g, n = 19), according to their urinary albumin excretion (UAE). Relative mRNA abundance of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were quantified, and correlations between target mRNAs and clinical parameters were examined.The urinary mRNA levels of all genes studied were significantly higher in the DN group compared with controls (p<0.05), and mRNA levels increased with DN progression. Urinary mRNA levels of all target genes positively correlated with both UAE and BUN. The expression of podocalyxin, CD2-AP, α-actin4, and podocin mRNA correlated with serum creatinine (r = 0.457, p = 0.001; r = 0.329, p = 0.01; r = 0.286, p = 0.021; r = 0.357, p = 0.006, respectively). Furthermore, podocalyxin mRNA was found to negatively correlate with eGFR (r = -0.349, p = 0.01).The urinary mRNA profiles of synaptopodin, podocalyxin, CD2-AP, α-actin4, and podocin were found to increase with the progression of DN, which suggested that quantification of podocyte-associated molecules will be useful biomarkers of DN.

Related Organizations
Keywords

Adult, Male, Podocytes, Reverse Transcriptase Polymerase Chain Reaction, Science, Sialoglycoproteins, Q, Microfilament Proteins, R, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Middle Aged, Cytoskeletal Proteins, Creatinine, Medicine, Humans, Actinin, Diabetic Nephropathies, Female, RNA, Messenger, Research Article, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
Green
gold