Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular and Molecul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular and Molecular Life Sciences
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Yeast as a sensor of factors affecting the accuracy of protein synthesis

Authors: Valente, Louis; Kinzy, Terri Goss;

Yeast as a sensor of factors affecting the accuracy of protein synthesis

Abstract

The cell monitors and maintains the fidelity of translation during the three stages of protein synthesis: initiation, elongation and termination. Errors can arise by multiple mechanisms, such as altered start site selection, reading frame shifts, misincorporation or nonsense codon suppression. All of these events produce incorrect protein products. Translational accuracy is affected by both cis- and trans-acting elements that insure the proper peptide is synthesized by the protein synthetic machinery. Many cellular components are involved in the accuracy of translation, including RNAs (transfer RNAs, messenger RNAs and ribosomal RNAs) and proteins (ribosomal proteins and translation factors). The yeast Saccharomyces cerevisiae has proven an ideal system to study translational fidelity by integrating genetic approaches with biochemical analysis. This review focuses on the ways studies in yeast have contributed to our understanding of the roles translation factors and the ribosome play in assuring the accuracy of protein synthesis.

Keywords

RNA, Transfer, Protein Biosynthesis, Biophysics, and Structural Biology, RNA, Messenger, Saccharomyces cerevisiae, Peptide Elongation Factors, Biochemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%