Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Neurobiolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Neurobiology
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Neurobiology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions

Cerebral Tissue Oxidative Ischemia-Reperfusion Injury in Connection with Experimental Cardiac Arrest and Cardiopulmonary Resuscitation: Effect of Mild Hypothermia and Methylene Blue

Authors: Wiklund, Lars; Patnaik, Ranjana; Sharma, Aruna; Miclescu, Adriana; Sharma, Hari Shanker;

Cerebral Tissue Oxidative Ischemia-Reperfusion Injury in Connection with Experimental Cardiac Arrest and Cardiopulmonary Resuscitation: Effect of Mild Hypothermia and Methylene Blue

Abstract

The present investigation is an expansion of previous studies which all share a basic experimental protocol of a porcine-induced cardiac arrest (CA) of 12 min followed by 8 min of cardiopulmonary resuscitation (CPR), different experimental treatments (immediate as well as postponed induced mild hypothermia and administration of much or less cool intravenous fluids), and a follow-up period of 3 h after which the animals were sacrificed. Another group of animals was studied according to the same protocol after 12-min CA and "standard CPR." After death (within 1 min), the brains were harvested and frozen in liquid nitrogen awaiting analysis. Control brains of animals were collected in the same way after short periods of untreated CA (0 min, 5 min, and 15-30 min). Previous studies concerning chiefly neuropathological changes were now expanded with analyses of different tissue indicators (glutathione, luminol, leucigenin, malonialdehyde, and myeloperoxidase) of cerebral oxidative injury. The results indicate that a great part of oxidative injury occurs within the first 5 min after CA. Immediate cooling by administration of much intravenous fluid results in less cerebral oxidative injury compared to less intravenous fluid administration. A 30-min postponement of induction of hypothermia results in a cerebral oxidative injury comparable to that of "standard CPR" or the oxidative injury found after 5 min of untreated CA. Intravenous administration of methylene blue (MB) during and immediately after CPR in combination with postponed cooling resulted in no statistical difference in any of the indicators of oxidative injury, except myeloperoxidase, and glutathione, when this treatment was compared with the negative controls, i.e., animals subjected to anesthesia alone.

Countries
Sweden, Sweden
Keywords

Oxidative injury, Methylene blue, Anestesi och intensivvård, Anesthesiology and Intensive Care, Swine, Cardiac arrest, Article, Cardiopulmonary Resuscitation, Brain Ischemia, Heart Arrest, Rats, Methylene Blue, Ischemia reperfusion, Treatment Outcome, Animals, Newborn, Hypothermia, Induced, Reperfusion Injury, Animals, Rats, Wistar

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid