Powered by OpenAIRE graph

RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family.

Authors: K, Miyake; Y, Yamashita; M, Ogata; T, Sudo; M, Kimoto;

RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family.

Abstract

Abstract The RP105 Ag is a murine B cell surface molecule that transmits an activation signal into B cells following ligation with anti-RP105 mAb. The activation leads to protection of B cells from irradiation- or dexamethasone-induced apoptosis, and to B cell proliferation. A cDNA encoding the RP105 Ag was isolated. An encoded protein is a type I transmembrane protein consisting of 641 amino acids in a mature form. Northern hybridization with a probe specific for the cDNA clone detected a transcript with a size of approximately 3 kb. The transcript was observed in spleen, but not in thymus, kidney, muscle, heart, brain, or liver. Stable transfection of the cDNA clone conferred the expression of the RP105 Ag on a pro-B cell line, which was confirmed by immunofluorescence staining and immunoprecipitation with anti-RP105 mAb. The RP105 molecule possesses 22 tandem repeats of a leucine-rich motif. These repeated motifs are observed in members of the leucine-rich repeat protein family, and have been implicated in protein-protein interactions, such as cell adhesion or receptor-ligand binding. Amino- and carboxyl-flanking regions that are characteristically conserved among members of the family are located on both sides of tandemly repeated leucine-rich motifs in RP105 molecule. These results demonstrate that RP105 is a novel member of the leucine-rich repeat protein family, and the first member that is specifically expressed on B cells.

Related Organizations
Keywords

B-Lymphocytes, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Membrane Proteins, Mice, Antigens, CD, Leucine, Antigens, Surface, Tumor Cells, Cultured, Animals, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    184
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
184
Top 1%
Top 1%
Top 10%