Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Plant Physiology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana

Authors: Brauc, Sigrid; De Vooght, Eline; Claeys, Martine; Höfte, Monica; Angenon, Geert;

Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana

Abstract

Arabidopsis possesses several genes encoding aspartate aminotransferase, which catalyzes the bidirectional conversion of aspartate into glutamate. These amino acids together with asparagine and glutamine play an important role in N storage and distribution. In addition, they act as precursors for other amino acids. The gene encoding cytosolic aspartate aminotransferase, Asp2, was found to be induced upon infection with the necrotrophic pathogen Botrytis cinerea in Arabidopsis. Asp2 over-expression lines and a T-DNA insertion mutant were used to study the role of aspartate aminotransferase in Arabidopsis defence responses. Over-expression of Asp2 led to changes in aspartate content and aspartate-derived amino acids. The Asp2 knockout mutant was also slightly affected in its amino acid composition. Under standard growth conditions, the Asp2 transgenic lines did not show morphological changes in comparison with the wild-type. However, transgenic lines with the highest Asp2 expression displayed more spreading lesions when infected with B. cinerea. We discuss how this gene involved in amino acid metabolism might interact with plant defence responses.

Related Organizations
Keywords

Arabidopsis thaliana, Proline, Arabidopsis Proteins, Arabidopsis, Gene Expression, Aspartate aminotransferase, Plants, Genetically Modified, Plant Leaves, Botrytis cinerea, Mutagenesis, Insertional, Gene Expression Regulation, Plant, Plant Immunity, Botrytis, Amino Acids, Aspartate Aminotransferase, Cytoplasmic, Plant Diseases, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%