Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Protocolsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Protocols
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Protocols
Article . 2010
versions View all 2 versions

Determination of gene expression patterns using in situ hybridization to Drosophila testes

Authors: Ceri A, Morris; Elizabeth, Benson; Helen, White-Cooper;

Determination of gene expression patterns using in situ hybridization to Drosophila testes

Abstract

We describe a whole-mount RNA in situ hybridization (ISH) method optimized for detection of the cellular and subcellular distributions of specific mRNA within Drosophila testes and male genital tract. Digoxygenin (dig)-labeled antisense RNA probes are in vitro transcribed from a template synthesized by (RT)-PCR; the probe length is reduced by hydrolysis. Testes and male genital tracts are dissected from adult flies, fixed and processed for hybridization. Both probe and fixed testes can be stored before use. Extensive post-hybridization washing reduces the background. Detection is through alkaline phosphatase-conjugated anti-dig antibodies followed by a color reaction. This protocol is suitable for low-medium throughput applications with parallel processing of 2-48 samples, and takes 4-5 d to complete. We have used this protocol, which is similar to other RNA ISH protocols, but optimized for whole-mount Drosophila testes, to document the expression of about 1,000 genes in Drosophila melanogaster male genital tract.

Related Organizations
Keywords

Male, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, Green Fluorescent Proteins, Drosophila melanogaster, Testis, Animals, Drosophila Proteins, RNA, Messenger, Digoxigenin, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%