Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2015 . Peer-reviewed
Data sources: DIGITAL.CSIC
Development
Article . 2013 . Peer-reviewed
Data sources: Crossref
Development
Article . 2013
versions View all 4 versions

Bithorax-complex genes sculpt the pattern of leucokinergic neurons in theDrosophilacentral nervous system

Authors: Estacio-Gómez, Alicia; Moris-Sanz, Marta; Shäfer, Anne-Kathrin; Perea, Daniel; Herrero, Pilar; Jiménez Díaz-Benjumea, Fernando;

Bithorax-complex genes sculpt the pattern of leucokinergic neurons in theDrosophilacentral nervous system

Abstract

Although the Hox genes are the main factors involved in the generation of diversity along the anterior/posterior body axis of segmented organisms, it is still largely unknown how these genes act in single cells to determine specific traits at precise developmental stages. The aim of this study was to understand the mechanisms by which Hox genes of the Bithorax complex (Bx-C) of Drosophila act to define segmental differences in the ventral nerve cord of the central nervous system. To achieve this, we have focused on the specification of the leucokinin-expressing neurons. We find that these neurons are specified from the same progenitor neuroblast at two different developmental stages: embryonic and larval neurogenesis. We show that genes of the Bx-C acted in postmitotic cells to specify the segment-specific appearance of leucokinergic cells in the larval and adult ventral nerve cord.

Keywords

Central Nervous System, Homeodomain Proteins, Time Factors, Genotype, Stem Cells, Neuropeptides, Gene Expression Regulation, Developmental, Immunohistochemistry, Nervous System, Drosophila melanogaster, Phenotype, Animals, Drosophila Proteins, Cell Lineage, Crosses, Genetic, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 29
    download downloads 17
  • 29
    views
    17
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
25
Top 10%
Average
Top 10%
29
17
Green