Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Toxicological Scienc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Toxicological Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Perfluorododecanoic Acid-Induced Steroidogenic Inhibition is Associated with Steroidogenic Acute Regulatory Protein and Reactive Oxygen Species in cAMP-Stimulated Leydig Cells

Authors: Lina Ding; Yixing Feng; Zhimin Shi; Hongxia Zhang; Jianshe Wang; Jiayin Dai;

Perfluorododecanoic Acid-Induced Steroidogenic Inhibition is Associated with Steroidogenic Acute Regulatory Protein and Reactive Oxygen Species in cAMP-Stimulated Leydig Cells

Abstract

Perfluorododecanoic acid (PFDoA) can be detected in environmental matrices and human serum and has been shown to inhibit testicular steroidogenesis in rats. However, the mechanisms that are responsible for the toxic effects of PFDoA remain unknown. The aims of this study were to investigate the mechanism of steroidogenesis inhibition by PFDoA and to identify the molecular target of PFDoA in Leydig cells. The effects of PFDoA on steroid synthesis in Leydig cells were assessed by radioimmunoassay. The expression of key genes and proteins in steroid biosynthesis was determined by real-time PCR and Western blot analysis. Reactive oxygen species (ROS) and hydrogen peroxide (H(2)O(2)) levels were determined using bioluminescence assays. PFDoA inhibited adenosine 3',5'-cyclophosphate (cAMP)-stimulated steroidogenesis in mouse Leydig tumor cells (mLTC-1) and primary rat Leydig cells in a dose-dependent manner. However, PFDoA (1-100 microM) did not exhibit effects on cell viability and cellular ATP levels in mLTC-1 cells. PFDoA inhibited steroidogenic acute regulatory protein (StAR) promoter activity and StAR expression at the messenger RNA (mRNA) and protein levels but did not affect mRNA levels of peripheral-type benzodiazepine receptor, cholesterol side-chain cleavage enzyme, or 3beta-hydroxysteroid dehydrogenase in cAMP-stimulated mLTC-1 cells. PFDoA treatment also resulted in increased levels of mitochondrial ROS and H(2)O(2). After excessive ROS and H(2)O(2) were eliminated in PFDoA-treated mLTC-1 cells by MnTMPyP (a superoxide dismutase analog), progesterone production was partially restored and StAR mRNA and protein levels were partially recovered. These data show that PFDoA inhibits steroidogenesis in cAMP-stimulated Leydig cells by reducing the expression of StAR through a model of action involving oxidative stress.

Related Organizations
Keywords

Male, Fluorocarbons, Cell Survival, Steroidogenic Acute Regulatory Protein, Lauric Acids, Leydig Cells, Hydrogen Peroxide, Phosphoproteins, Mitochondria, Rats, Mice, Gene Expression Regulation, Species Specificity, Cell Line, Tumor, Cyclic AMP, Animals, Testosterone, Reactive Oxygen Species, Progesterone

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Average
Top 10%
bronze