Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

G1/S Arrest Induced by Histone Deacetylase Inhibitor Sodium Butyrate in E1A + Ras-transformed Cells Is Mediated through Down-regulation of E2F Activity and Stabilization of β-Catenin

Authors: Maria V, Abramova; Tatiana V, Pospelova; Fedor P, Nikulenkov; Christine M, Hollander; Albert J, Fornace; Valery A, Pospelov;

G1/S Arrest Induced by Histone Deacetylase Inhibitor Sodium Butyrate in E1A + Ras-transformed Cells Is Mediated through Down-regulation of E2F Activity and Stabilization of β-Catenin

Abstract

Tumor cells are often characterized by a high and growth factor-independent proliferation rate. We have previously shown that REF cells transformed with oncogenes E1A and c-Ha-Ras do not undergo G(1)/S arrest of the cell cycle after treatment with genotoxic factors. In this work, we used sodium butyrate, a histone deacetylase inhibitor, to show that E1A + Ras transformants were able to stop proliferation and undergo G(1)/S arrest. Apart from inducing G(1)/S arrest, sodium butyrate was shown to change expression of a number of cell cycle regulatory genes. It down-regulated cyclins D1, E, and A as well as c-myc and cdc25A and up-regulated the cyclin-kinase inhibitor p21(waf1). Accordingly, activities of cyclin E-Cdk2 and cyclin A-Cdk2 complexes in sodium butyrate-treated cells were decreased substantially. Strikingly, E2F1 expression was also down-modulated at the levels of gene transcription, the protein content, and the E2F transactivating capability. To further study the role of p21(waf1) in the sodium butyrate-induced G(1)/S arrest and the E2F1 down-modulation, we established E1A + Ras transformants from mouse embryo fibroblast cells with deletion of the cdkn1a (p21(waf1)) gene. Despite the absence of p21(waf1), sodium butyrate-treated mERas transformants reveal a slightly delayed G(1)/S arrest as well as down-modulation of E2F1 activity, implying that the observed effects are mediated through an alternative p21(waf1)-independent signaling pathway. Subsequent analysis showed that sodium butyrate induced accumulation of beta-catenin, a downstream component of the Wnt signaling. The results obtained indicate that the antiproliferative effect of histone deacetylase inhibitors on E1A + Ras-transformed cells can be mediated, alongside other mechanisms, through down-regulation of E2F activity and stabilization of beta-catenin.

Keywords

Cyclin-Dependent Kinase Inhibitor p21, G1 Phase, Rats, S Phase, Proto-Oncogene Proteins c-myc, Butyrates, Mice, Isobutyrates, ras Proteins, Animals, Humans, cdc25 Phosphatases, Adenovirus E1A Proteins, Enzyme Inhibitors, E2F1 Transcription Factor, beta Catenin, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
gold