Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

SUMO modification regulates the protein stability of NDRG1

Authors: Jae Eun, Lee; Jung Hwa, Kim;

SUMO modification regulates the protein stability of NDRG1

Abstract

N-myc Downstream Regulated Gene 1 (NDRG1) is a metastasis suppressor protein which suppresses metastasis without affecting primary tumorigenesis. There have been many reports about the anti-metastatic function of NDRG1 in various cancers. However, the regulatory mechanism of NDRG1 at the protein level has not been studied widely. Here, we found that NDRG1 is posttranslationally modified by Small Ubiquitin-like Modifier (SUMO), preferentially by SUMO-2, and the major SUMO acceptor site of NDRG1 is Lys 14. Using various SUMO-2 modification status mimicking NDRG1 mutants, we characterized the role of SUMO-2 modification on NDRG1. SUMO-2 modification does not affect the subcellular distribution of NDRG1. However, the protein stability of NDRG1 is influenced by SUMO-2 modification. We found that both the wildtype and the SUMO modification site mutant form of the NDRG1 protein were very stable but the protein stability of SUMO-2 fused NDRG1 K14R had dramatically decreased. In addition, the expression of p21 is downregulated by overexpression of SUMO-2 fused NDRG1 K14R mutants. These results indicate that SUMO-2 modification is implicated in the modulation of NDRG1 protein level and function. This novel link between SUMO modification and regulation of NDRG1 could be a therapeutic target for treatment of various metastatic cancers.

Related Organizations
Keywords

Cyclin-Dependent Kinase Inhibitor p21, Protein Stability, Lysine, Intracellular Signaling Peptides and Proteins, Ubiquitination, Sumoylation, Cell Cycle Proteins, HEK293 Cells, Mutation, Small Ubiquitin-Related Modifier Proteins, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Average