Powered by OpenAIRE graph

Rapid Downregulation of Cyclin D1 Induced by Geranylgeranoic Acid in Human Hepatoma Cells

Authors: Shohei, Shimonishi; Takashi, Muraguchi; Maiko, Mitake; Chiharu, Sakane; Kyoko, Okamoto; Yoshihiro, Shidoji;

Rapid Downregulation of Cyclin D1 Induced by Geranylgeranoic Acid in Human Hepatoma Cells

Abstract

Geranylgeranoic acid (GGA) and its derivatives are currently under development as chemopreventive agents against second primary hepatoma in Japan. We aimed to evaluate chemoprevention targets of GGA and a surrogate marker of chemopreventive response to clarify the molecular mechanism of hepatoma chemoprevention with GGA. Human hepatoma-derived cell lines such as HuH-7, PLC/PRF/5, and HepG-2, were treated with GGA and its derivatives. Cellular dynamics of several cell-cycle-related proteins were assessed by either immunoblotting or immunofluorescence method. The cellular expression of cyclin D1 protein was suppressed immediately after GGA treatment. This reduction was partially blocked by pretreatment with 26S proteasome inhibitor MG-132, indicating that proteasomal degradation was involved in GGA-induced disappearance of cyclin D1. A phosphorylation of retinoblastoma protein (RB) at serine 780, a target site of cyclin D1-dependent kinase 4, was rapidly decreased in GGA-treated HuH-7 cells. Furthermore, subcellular fractionation, Western blotting, and immunofluorescence revealed GGA-induced nuclear accumulation of RB. These results strongly suggest that cyclin D1 may be a target of chemopreventive GGA in human hepatoma cells. GGA-induced rapid repression of cyclin D1, and a consequent dephosphorylation and nuclear translocation of RB, may influence cell cycle progression and may be relevant to GGA-induced cell death mechanisms.

Keywords

Proteasome Endopeptidase Complex, Leupeptins, Reverse Transcriptase Polymerase Chain Reaction, Cell Cycle, Liver Neoplasms, Down-Regulation, Hep G2 Cells, Retinoblastoma Protein, Gene Expression Regulation, Neoplastic, Cell Line, Tumor, Humans, Cyclin D1, Diterpenes, Phosphorylation, E2F1 Transcription Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average