Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 1994 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope.

Authors: R W, Wozniak; G, Blobel; M P, Rout;

POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope.

Abstract

We have identified a concanavalin A-reactive glycoprotein of 150 kD that coenriches with isolated yeast nuclear pore complexes. Molecular cloning and sequencing of this protein revealed a single canonical transmembrane segment. Epitope tagging and localization by both immunofluorescence and immunoelectron microscopy confirmed that it is a pore membrane protein. The protein was termed POM152 (for pore membrane protein of 152 kD) on the basis of its location and cDNA-deduced molecular mass. POM152 is likely to be a type II membrane protein with its NH2-terminal region (175 residues) and its COOH-terminal region (1,142 residues) positioned on the pore side and cisternal side of the pore membrane, respectively. The proposed cisternally exposed domain contains eight repetitive motifs of approximately 24 residues. Surprisingly, POM152 deletion mutants were viable and their growth rate was indistinguishable from that of wild-type cells at temperatures between 17 and 37 degrees C. However, overproduction of POM152 inhibited cell growth. When expressed in mouse 3T3 cells, POM152 was found to be localized to the pore membrane, suggesting a conserved sorting pathway between yeast and mammals.

Related Organizations
Keywords

Membrane Glycoproteins, Saccharomyces cerevisiae Proteins, Base Sequence, Sequence Homology, Amino Acid, Nuclear Envelope, Genes, Fungal, Molecular Sequence Data, Nuclear Proteins, 3T3 Cells, Saccharomyces cerevisiae, Fungal Proteins, Mice, Mutagenesis, Insertional, Nuclear Pore, Animals, Amino Acid Sequence, Sequence Alignment, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 10%
Top 1%
Top 1%
bronze