Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2005 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2006
versions View all 3 versions

Genome-Wide Identification of Potential Plant E2F Target Genes

Authors: Vandepoele, Klaas; Vlieghe, Kobe; Florquin, Kobe; Hennig, Lars; Beemster, Gerrit; Gruissem, Wilhelm; Van de Peer, Yves; +2 Authors

Genome-Wide Identification of Potential Plant E2F Target Genes

Abstract

Abstract Entry into the S phase of the cell cycle is controlled by E2F transcription factors that induce the transcription of genes required for cell cycle progression and DNA replication. Although the E2F pathway is highly conserved in higher eukaryotes, only a few E2F target genes have been experimentally validated in plants. We have combined microarray analysis and bioinformatics tools to identify plant E2F-responsive genes. Promoter regions of genes that were induced at the transcriptional level in Arabidopsis (Arabidopsis thaliana) seedlings ectopically expressing genes for the E2Fa and DPa transcription factors were searched for the presence of E2F-binding sites, resulting in the identification of 181 putative E2F target genes. In most cases, the E2F-binding element was located close to the transcription start site, but occasionally could also be localized in the 5′ untranslated region. Comparison of our results with available microarray data sets from synchronized cell suspensions revealed that the E2F target genes were expressed almost exclusively during G1 and S phases and activated upon reentry of quiescent cells into the cell cycle. To test the robustness of the data for the Arabidopsis E2F target genes, we also searched for the presence of E2F-cis-acting elements in the promoters of the putative orthologous rice (Oryza sativa) genes. Using this approach, we identified 70 potential conserved plant E2F target genes. These genes encode proteins involved in cell cycle regulation, DNA replication, and chromatin dynamics. In addition, we identified several genes for potentially novel S phase regulatory proteins.

Related Organizations
Keywords

EXPRESSION, E2F-REGULATED GENES, REGULATORY ELEMENTS, Arabidopsis, Genes, Plant, Response Elements, Gene Expression Regulation, Plant, Consensus Sequence, MICROARRAY ANALYSIS, CELL-CYCLE, Promoter Regions, Genetic, Oligonucleotide Array Sequence Analysis, Plant Proteins, Base Sequence, Arabidopsis Proteins, Gene Expression Profiling, Cell Cycle, DNA-REPLICATION, Biology and Life Sciences, Oryza, ARABIDOPSIS, FAMILY, E2F Transcription Factors, TRANSCRIPTION FACTORS, S-PHASE, Genome, Plant, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    226
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
226
Top 1%
Top 10%
Top 1%
Green
hybrid