Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infection and Immuni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection and Immunity
Article . 2003 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Plasmodium falciparum Is Able To InvadeErythrocytes through a Trypsin-Resistant Pathway Independent ofGlycophorinB

Authors: Deepak, Gaur; Jill R, Storry; Marion E, Reid; John W, Barnwell; Louis H, Miller;

Plasmodium falciparum Is Able To InvadeErythrocytes through a Trypsin-Resistant Pathway Independent ofGlycophorinB

Abstract

ABSTRACT Plasmodium falciparum invades erythrocytes through multiple ligand-receptor interactions, with redundancies in each pathway. One such alternate pathway is the trypsin-resistant pathway that enables P. falciparum to invade trypsin-treated erythrocytes. Previous studies have shown that this trypsin-resistant pathway is dependent on glycophorin B, as P. falciparum strains invade trypsin-digested glycophorin B-deficient erythrocytes at a highly reduced efficiency. Furthermore, in a recent study, the P. falciparum 7G8 strain did not invade glycophorin B-deficient erythrocytes, a finding that was not confirmed in the present study. To analyze the degree of dependence on glycophorin B for invasion by P. falciparum through the trypsin-resistant pathway, we have studied the invasion phenotypes of five parasite strains, 3D7, HB3, Dd2, 7G8, and Indochina I, on trypsin-treated normal and glycophorin B-deficient erythrocytes. Invasion was variably reduced in glycophorin B-deficient erythrocytes. Four strains, 3D7, HB3, Dd2, and Indochina I, invaded trypsin-treated erythrocytes, while invasion by the 7G8 strain was reduced by 90%. Among the four strains, invasion by 3D7, HB3, and Dd2 of trypsin-digested glycophorin B-deficient erythrocytes was further reduced. However, Indochina I invaded trypsin-digested glycophorin B-deficient erythrocytes at the same efficiency as its invasion of trypsin-digested normal erythrocytes. This strongly suggests that the Indochina I strain of P. falciparum is not dependent on glycophorin B to invade through a trypsin-resistant pathway as are the strains 3D7, HB3, and Dd2. Thus, P. falciparum is able to invade erythrocytes through a glycophorin B-independent, trypsin-resistant pathway.

Keywords

Erythrocytes, Plasmodium falciparum, Drug Resistance, Animals, Humans, Trypsin, Glycophorins, Malaria, Falciparum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
gold