Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Characterization of the VEGF Binding Site on the Flt-1 Receptor

Authors: M T, Herley; Y, Yu; R G, Whitney; J D, Sato;

Characterization of the VEGF Binding Site on the Flt-1 Receptor

Abstract

The angiogenic growth factor VEGF binds to the receptor tyrosine kinases Flt-1 and KDR/Flk-1. Immunoglobulin (Ig)-like loop-2 of Flt-1 is involved in binding VEGF, but the contribution of other Flt-1 Ig-loops to VEGF binding remains unclear. We tested the ability of membrane-bound chimeras between the extracellular domain of Flt-1 and the cell adhesion molecule embigin to bind VEGF. VEGF bound as well to receptors containing Flt-1 loops 1-2 or 2-3 as it did to the entire Flt-1 extracellular domain. Chimeras containing only loop-2 of Flt-1 bound VEGF with 22-fold lower affinity. We conclude that high-affinity VEGF binding requires Ig-like loop-2 plus either loop-1 or loop-3. In addition, Flt-1 amino acid residues Arg-224 and Asp-231 were not essential for high-affinity binding of VEGF to membrane-bound Flt-1.

Keywords

Lymphokines, Binding Sites, Membrane Glycoproteins, Base Sequence, Molecular Sequence Data, Membrane Proteins, Receptor Protein-Tyrosine Kinases, Endothelial Growth Factors, Protein Structure, Secondary, Rats, Kinetics, Amino Acid Substitution, Proto-Oncogene Proteins, Mutagenesis, Site-Directed, Animals, Humans, Cloning, Molecular, DNA Primers, Glycoproteins, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%