Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Viral Hep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Viral Hepatitis
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions

Ex vivo analysis of resident hepatic pro‐inflammatory CD1d‐reactive T cells and hepatocyte surface CD1d expression in hepatitis C

Authors: Yanagisawa, K.; Yue, S.; Van Der Vliet, H. J.; Wang, R.; Alatrakchi, N.; Golden-Mason, L.; Schuppan, D.; +3 Authors

Ex vivo analysis of resident hepatic pro‐inflammatory CD1d‐reactive T cells and hepatocyte surface CD1d expression in hepatitis C

Abstract

SummaryHepatic CD1d‐restricted and natural killer T‐cell populations are heterogeneous. Classical ‘type 1′ α‐galactosylceramide‐reactive CD1d‐restricted T cells express ‘invariant’ TCRα (‘iNKT’). iNKT dominating rodent liver are implicated in inflammation, including in hepatitis models. Low levels of iNKT are detected in human liver, decreased in subjects with chronic hepatitis C (CHC). However, high levels of human hepatic CD161±CD56± noninvariant pro‐inflammatory CD1d‐restricted ‘type 2′ T cells have been identified in vitro. Unlike rodents, healthy human hepatocytes only express trace and intracellular CD1d. Total hepatic CD1d appears to be increased in CHC and primary biliary cirrhosis. Direct ex vivo analysis of human intrahepatic lymphocytes (IHL), including matched ex vivo versus in vitro expanded IHL, demonstrated detectable noninvariant CD1d reactivity in substantial proportions of HCV‐positive livers and significant fractions of HCV‐negative livers. However, α‐galactosylceramide‐reactive iNKT were detected only relatively rarely. Liver CD1d‐restricted IHL produced IFNγ, variable levels of IL‐10 and modest levels of Th2 cytokines IL‐4 and IL‐13 ex vivo. In a novel FACS assay, a major fraction (10–20%) of hepatic T cells rapidly produced IFNγ and up‐regulated activation marker CD69 in response to CD1d. As previously only shown with murine iNKT, noninvariant human CD1d‐specific responses were also augmented by IL‐12. Interestingly, CD1d was found selectively expressed on the surface of hepatocytes in CHC, but not those CHC subjects with history of alcohol usage or resolved CHC. In contrast to hepatic iNKT, noninvariant IFNγ‐producing type 2 CD1d‐reactive NKT cells are commonly detected in CHC, together with cognate ligand CD1d, implicating them in CHC liver damage.

Keywords

Adult, Male, CD1, T-Lymphocytes, NKT, Hepatitis C, Chronic, Middle Aged, chronic, Mice, Young Adult, Liver, inflammation, Hepatocytes, Animals, Cytokines, Humans, Female, human, Antigens, CD1d, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze