Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2000 . Peer-reviewed
Data sources: Crossref
Development
Article . 2000
versions View all 2 versions

Barbu: an E(spl) m4/mα-related gene that antagonizes Notch signaling and is required for the establishment of ommatidial polarity

Authors: S, Zaffran; M, Frasch;

Barbu: an E(spl) m4/mα-related gene that antagonizes Notch signaling and is required for the establishment of ommatidial polarity

Abstract

ABSTRACT The Notch signaling pathway is required, in concert with cell-type-specific transcriptional regulators and other signaling processes, for multiple cell fate decisions during mesodermal and ectodermal tissue development. In many instances, Notch signaling occurs initially in a bidirectional manner and then becomes unidirectional upon amplification of small inherent differences in signaling activity between neighboring cells. In addition to ligands and extracellular modulators of the Notch receptor, several intracellular proteins have been identified that can positively or negatively influence the activity of the Notch pathway during these dynamic processes. Here, we describe a new gene, Barbu, whose product can antagonize Notch signaling activity during Drosophila development. Barbu encodes a small and largely cytoplasmic protein with sequence similarity to the proteins encoded by the transcription units m4 and mα of the E(spl) complex. Ectopic expression studies with Barbu provide evidence that Barbu can antagonize Notch during lateral inhibition processes in the embryonic mesoderm, sensory organ specification in imaginal discs and cell type specification in developing ommatidia. Barbu loss-of-function mutations cause lethality and disrupt the establishment of planar polarity and photoreceptor specification in eye imaginal discs, which may also be a consequence of altered Notch signaling activities. Furthermore, in the embryonic neuroectoderm, Barbu expression is inducible by activated Notch. Taken together, we propose that Barbu functions in a negative feed-back loop, which may be important for the accurate adjustment of Notch signaling activity and the extinction of Notch activity between successive rounds of signaling events.

Related Organizations
Keywords

Embryo, Nonmammalian, Receptors, Notch, Sequence Homology, Amino Acid, Transcription, Genetic, Molecular Sequence Data, Restriction Mapping, Gene Expression Regulation, Developmental, Membrane Proteins, Proteins, Eye, Trans-Activators, Animals, Drosophila Proteins, Drosophila, Amino Acid Sequence, Sequence Alignment, Conserved Sequence, Body Patterning, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%